Axolotl

From Wikipedia, the free encyclopedia
Axolotl
Conservation status
Scientific classification
Kingdom:Animalia
Phylum:Chordata
Class:Amphibia
Order:Caudata
Family:Ambystomatidae
Genus:Ambystoma
Species:A. mexicanum
Binomial name
Ambystoma mexicanum
(Shaw, 1789)
The axolotl (/ˈæksəlɒtəl/etymol. Nāhuatl āxōlōtl [aːˈʃoːloːt͡ɬ] (singular) or āxōlōmeh [aːˈʃoːloːmeʔ] (plural) "water monster"),[1] also known as a Mexican salamander (Ambystoma mexicanum) or a Mexican walking fish, is a neotenic salamander, closely related to the tiger salamander.[2][3] Although the axolotl is colloquially known as a "walking fish", it is not a fish, but an amphibian. The species originates from numerous lakes, such as Lake Xochimilco underlying Mexico City.[4] Larvae of this species fail to undergo metamorphosis, so the adults remain aquatic and gilled.
Axolotls should not be confused with waterdogs, the larval stage of the closely related tiger salamanders (A. tigrinum and A. mavortium), which are widespread in much of North America and occasionally become neotenic. Neither should they be confused with mudpuppies (Necturus spp.), fully aquatic salamanders which are not closely related to the axolotl but bear a superficial resemblance.[1]
As of 2010, wild axolotls are near extinction[5] due to urbanization in Mexico City and polluted waters. They are currently listed by CITES as anendangered species and by IUCN as critically endangered in the wild, with a decreasing population. Axolotls are used extensively in scientific research due to their ability to regenerate limbs.[6] Axolotls were also sold as food in Mexican markets and were a staple in the Aztec diet.

Description

A sexually mature adult axolotl, at age 18–24 months, ranges in length from 15–45 cm (6–18 in), although a size close to 23 cm (9 in) is most common and greater than 30 cm (12 in) is rare. Axolotls possess features typical of salamander larvae, including external gills and a caudal fin extending from behind the head to the vent.[citation needed]
Their heads are wide, and their eyes are lidless. Their limbs are underdeveloped and possess long, thin digits. Males are identified by their swollen cloacae lined with papillae, while females are noticeable for their wider bodies full of eggs. Three pairs of external gill stalks (rami) originate behind their heads and are used to move oxygenated water. The external gill rami are lined with filaments (fimbriae) to increase surface area for gas exchange.[citation needed] Four gill slits lined with gill rakers are hidden underneath the external gills.
Axolotls have barely visible vestigial teeth, which would have developed during metamorphosis. The primary method of feeding is by suction, during which their rakers interlock to close the gill slits. External gills are used for respiration, although buccal pumping (gulping air from the surface) may also be used to provide oxygen to their lungs. Axolotls have four different colours, including two mutant colors. The two normal colors are "wildtype" (varying shades of brown usually with spots) and melanoid (black). The two mutant colors are leucistic (pale pink with black eyes) and albino (golden, tan or pale pink with pink eyes).[citation needed]

Habitat and ecology

Axolotl in captivity
The axolotl is only native to Lake Xochimilco and Lake Chalco in central Mexico. Unfortunately for the axolotl, Lake Chalco no longer exists, as it was artificially drained to avoid periodic flooding, and Lake Xochimilco remains a remnant of its former self, existing mainly as canals. The water temperature in Xochimilco rarely rises above 20 °C (68 °F), though it may fall to 6 to 7°C in the winter, and perhaps lower.
The wild population has been put under heavy pressure by the growth of Mexico City. The axolotl is currently on the International Union for Conservation of Nature's annual Red List of threatened species. Non-native fish, such as African tilapia and Asian carp, have also recently been introduced to the waters. These new fish have been eating the axolotls' young, as well as its primary source of food.[7]
Axolotls are members of the Ambystoma tigrinum (Tiger salamander) complex, along with all other Mexican species of Ambystoma. Their habitat is like that of most neotenic species—a high altitude body of water surrounded by a risky terrestrial environment. These conditions are thought to favorneoteny. However, a terrestrial population of Mexican Tiger Salamanders occupies and breeds in the axolotl's habitat.
The axolotl is carnivorous, consuming small prey such as worms, insects, and small fish in the wild. Axolotls locate food by smell, and will "snap" at any potential meal, sucking the food into their stomachs with vacuum force.[citation needed]

Neoteny

Axolotls exhibit neoteny, meaning they reach sexual maturity without undergoing metamorphosis. Many species within the axolotl's genus are either entirely neotenic or have neotenic populations. In the axolotl, metamorphic failure is caused by a lack of thyroid stimulating hormone, which is used to induce the thyroid to produce thyroxine in transforming salamanders. The genes responsible for neoteny in laboratory animals may have been identified; however, they are not linked in wild populations, suggesting artificial selection is the cause of complete neoteny in laboratory and pet axolotls.[citation needed]
Neoteny has been observed in all salamander families in which it seems to be a survival mechanism, in aquatic environments only of mountain and hill, with little food and, in particular, with littleiodine. In this way, salamanders can reproduce and survive in the form of a smaller larval stage, which is aquatic and requires a lower quality and quantity of food compared to the big adult, which is terrestrial. If the salamander larvae ingest a sufficient amount of iodine, directly or indirectly through cannibalism, they quickly begin metamorphosis and transform into bigger terrestrial adults, with higher dietary requirements.[8] In fact, in some high mountain lakes also live dwarf forms of salmonids, caused by deficiency of food and of iodine, in particular, which causes cretinism anddwarfism due to hypothyroidism, as it does in humans.
Unlike some other neotenic salamanders (sirens and Necturus), axolotls can be induced to metamorphose by an injection of iodine (used in the production of thyroid hormones) or by shots of thyroxine hormone. The adult form resembles a terrestrial plateau tiger salamander, but has several differences, such as longer toes, which support its status as a separate species.[citation needed]

Use as a model organism

Six adult axolotls (including a leucistic specimen) were shipped from Mexico City to the Jardin des Plantes in Paris in 1863. Unaware of their neoteny, Auguste Duméril was surprised when, instead of the axolotl, he found in the vivarium a new species, similar to the salamander. This discovery was the starting point of research about neoteny. It is not certain that Ambystoma velascispecimens were not included in the original shipment.
Vilem Laufberger of Germany used thyroid hormone injections to induce an axolotl to grow into a terrestrial adult salamander. The experiment was repeated by Englishman Julian Huxley, who was unaware the experiment had already been done, using ground thyroids. Since then, experiments have been done often with injections of iodine or various thyroid hormones used to induce metamorphosis.[citation needed]
Today, the axolotl is still used in research as a model organism, and large numbers are bred in captivity. They are especially easy to breed compared to other salamanders in their family, which are almost never captive-bred due to the demands of terrestrial life. One attractive feature for research is the large and easily manipulated embryo, which allows viewing of the full development of a vertebrate. Axolotls are used in heart defect studies due to the presence of a mutant gene that causes heart failure in embryos. Since the embryos survive almost to hatching with no heart function, the defect is very observable. The presence of several color morphs has also been extensively studied.[citation needed]
The feature of the salamander that attracts most attention is its healing ability: the axolotl does not heal by scarring and is capable of the regeneration of entire lost appendages in a period of months, and, in certain cases, more vital structures. Some have indeed been found restoring the less vital parts of their brains. They can also readily accept transplants from other individuals, including eyes and parts of the brain—restoring these alien organs to full functionality. In some cases, axolotls have been known to repair a damaged limb, as well as regenerating an additional one, ending up with an extra appendage that makes them attractive to pet owners as a novelty. In metamorphosed individuals, however, the ability to regenerate is greatly diminished. The axolotl is therefore used as a model for the development of limbs in vertebrates.[9]

Captive care

Axolotls live at temperatures of 12 to 20 °C (54 to 68 °F), preferably 17 to 18 °C (63 to 64 °F). As for all poikilothermic organisms, lower temperatures result in slower metabolism; higher temperatures can lead to stress and increased appetite. Chlorine, commonly added to tapwater, is harmful to axolotls. A single typical axolotl typically requires a 40-l (10-gal) tank with a water depth of at least 15 cm (6 in). Axolotls spend a majority of the time at the bottom of the tank.[citation needed]
Salts, such as Holtfreter's solution, are usually added to the water to prevent infection.[10]
In captivity, axolotls eat a variety of readily available foods, including trout and salmon pellets, frozen or live bloodwormsearthworms, and waxworms. Axolotls can also eat feeder fish, but care should be taken as fish left in the tank may graze on the axolotls' exposed gills.[citation needed] Axolotls are prone to cannibalism.
Axolotls may suffer from impaction-related issues if not kept on the correct substrate with fine sand being the preferred option. Impaction can be caused by the digestion of gravel and could be severe enough to cause death, so they must never be kept on gravel or stones that are smaller than the axolotls' head.

In popular culture

In 1958, MAD Magazine parodied Wordsworth's Daffodils as a poem about axolotls, likely the first time any of its readers had heard of the animal.[11]
In the video game series Animal Crossing, there is a reoccurring anthropomorphic axolotl character called Dr. Shrunk, who first appeared in the Nintendo DS game Wild World. He is usually depicted as a comedian who teaches the players to perform animated emotions.
Argentine author Julio Cortázar wrote a short story titled "Axolotl", which first appeared in the Buenos Aires magazine Literaria in 1952. A complex narrative, it is written as a first-person account of the metamorphosis the narrator has gone through: from being a human fascinated by the axolotles at the Jardin des Plantes, through an inability to distinguish his own existence from that of the axolotl, to becoming an axolotl himself hoping that an old human acquaintance will remember and write about him.[12]
Google Drive allows users to view uploaded documents. When someone is currently viewing a document, the built-in text editor shows it. When a user is not logged into his Google Account,Google uses different real and fictional animals to identify that person. The list of those animals includes about 70 options, and one of them is the axolotl.[13]

See also

References

  1. Jump up to:a b Malacinski, George M. (Spring, 1978). "The Mexican Axolotl, Ambystoma mexicanum: Its Biology and Developmental Genetics, and Its Autonomous Cell-Lethal Genes". American Zoologist (Oxford University Press).
  2. Jump up^ http://www.aquariumindustries.com.au/wp-content/uploads/2012/07/Mexican-Walking-Fish.pdf
  3. Jump up^ "Axolotols (Walking Fish)". Aquarium Online. Retrieved 2013-09-12.
  4. Jump up^ "Ambystoma mexicanum". Retrieved July 10, 2011.
  5. Jump up^ Matt Walker (2009-08-26). "Axolotl verges on wild extinction". BBC. Retrieved 2010-06-28.
  6. Jump up^ Weird Creatures with Nick Baker (Television series). Dartmoor, England, U.K.: The Science Channel. 2009-11-11. Event occurs at 00:25.
  7. Jump up^ "Mexico City's 'water monster' nears extinction". 2008-11. Retrieved 2010-06-28.
  8. Jump up^ Venturi, S. (2004). Iodine and Evolution. DIMI-Marche.https://sites.google.com/site/iodinestudies/morosini
  9. Jump up^ Roy, S; Gatien, S (2008 Nov). "Regeneration in axolotls: a model to aim for!". Experimental Gerontology 43 (11): 968–73. doi:10.1016/j.exger.2008.09.003PMID 18814845.
  10. Jump up^ Clare, John P. "Health and Diseases"Axolotls
  11. Jump up^ Unknown author (1958), "I wandered lonely as a clod",MAD Magazine (#43), reprinted in Leslie Pockell, ed. (2008),100 Poems to Lift Your Spirits, New York: Grand Central Publishing, ISBN 978-0-446-17795-5.
  12. Jump up^ Harvard Course Wikis - Axolotl
  13. Jump up^ Anonymous Animals in Google Drive

External links